

A Seamless Development Ecosystem for Neurosynaptic Applications

Filipp Akopyan

(akopyan@us.ibm.com)

IBM Research - Almaden

July 17th 2014 – IARPA

Dharmendra Modha's SyNAPSE Team and collaborators

IBM Research – Almaden
IBM Research – Austin
IBM Research – Watson
Cornell University
50+ researchers and designers

http://www.research.ibm.com/cognitive-computing/neurosynaptic-chips.shtml

The Four MICrONS Pillars

Algorithmic Framework	Data on the Structure and Function of Cortical Microcircuits
Computational Neural Models of Cortical Microcircuits	Novel Machine Learning Algorithms

Inference and Recognition Algorithms on IBM's TrueNorth Architecture

Algorithms:

convolution networks
lateral and recurrent networks
feature extraction
spectral content estimators
liquid state machines
restricted Boltzmann machines
FSMs
hidden Markov models
looming detection
temporal pattern matching
classifiers

Applications:

speaker recognition
music composer recognition
digit recognition
sequence prediction
collision avoidance
optical flow
eye detection
saliency system
air robot path following

On-going:

Tomaso Poggio's HMAX,
Jeff Hawkins' HTM

Itamar's spatio-temporal clustering
probabilistic graphical models,
dynamic BBNs,

Eliasmith's neural eng. framework

SyNAPSE Ecosystem

Corelet Programming Environment (CPE) enables:

- Specification and composition of large networks, built from various components, that concurrently perform different tasks.
- Construction of complex applications and cognitive algorithms

 while being efficient for TrueNorth and effective for programmer productivity.

(Amir et al 2013)

Neurosynaptic Example Applications

- Threshold = 100
- •Synapse Strength = +1
- •Synapse set p=0.2; recurrent connections

Contact Information

Principal Investigator:

Dharmendra Modha

Chief Scientist and Senior Manager, IBM Fellow

Brain-Inspired Computing (IBM Research – Almaden)

dmodha@us.ibm.com

1-408-927-1887

http://www.research.ibm.com/cognitive-computing/neurosynaptic-chips.shtml

Looking for neuroscience data that can be used for computational modeling.